Graph classes with and without powers of bounded clique-width
نویسندگان
چکیده
Clique-width is a graph parameter with many algorithmic applications. For a positive integer k, the k-th power of a graph G is the graph with the same vertex set as G, in which two distinct vertices are adjacent if and only if they are at distance at most k in G. Many graph algorithmic problems can be expressed in terms of graph powers. We initiate the study of graph classes of power-bounded clique-width. A graph class is said to be of power-bounded clique-width if there exists an integer k such that the k-th powers of graphs in the class form a class of bounded cliquewidth. We identify several graph classes of power-unbounded clique-width and give a sufficient condition for clique-width to be power-bounded. Based on this condition, we characterize graph classes of power-bounded clique-width among classes defined by two connected forbidden induced subgraphs. We also show that for every integer k, there exists a graph class of power-bounded clique-width such that the k-th powers of graphs in the class form a class of unbounded clique-width.
منابع مشابه
Computing the Clique-Width of Large Path Powers in Linear Time via a New Characterisation of Clique-Width
Clique-width is one of the most important graph parameters, as many NP-hard graph problems are solvable in linear time on graphs of bounded clique-width. Unfortunately the computation of clique-width is among the hardest problems. In fact we do not know of any other algorithm than brute force for the exact computation of clique-width on any nontrivial large graph class. Another difficulty about...
متن کاملA Complete Characterisation of the Linear Clique-Width of Path Powers
A k-path power is the k-power graph of a simple path of arbitrary length. Path powers form a non-trivial subclass of proper interval graphs. Their clique-width is not bounded by a constant, and no polynomial-time algorithm is known for computing their clique-width or linear clique-width. We show that k-path powers above a certain size have linear clique-width exactly k + 2, providing the first ...
متن کاملA Unified Polynomial-Time Algorithm for Feedback Vertex Set on Graphs of Bounded Mim-Width
We give a first polynomial-time algorithm for (Weighted) Feedback Vertex Set on graphs of bounded maximum induced matching width (mim-width). Explicitly, given a branch decomposition of mim-width w, we give an nO(w)-time algorithm that solves Feedback Vertex Set. This provides a unified algorithm for many well-known classes, such as Interval graphs and Permutation graphs, and furthermore, it gi...
متن کاملOn the Clique-Width of Perfect Graph Classes
Graphs of clique–width at most k were introduced by Courcelle, Engelfriet and Rozenberg (1993) as graphs which can be defined by k-expressions based on graph operations which use k vertex labels. In this paper we study the clique–width of perfect graph classes. On one hand, we show that every distance–hereditary graph, has clique– width at most 3, and a 3–expression defining it can be obtained ...
متن کاملClique-Width for Four-Vertex Forbidden Subgraphs
Clique-width of graphs is a major new concept with respect to efficiency of graph algorithms. The notion of clique-width extends the one of treewidth, since bounded treewidth implies bounded clique-width. We give a complete classification of all graph classes defined by forbidden induced subgraphs of at most four vertices with respect to bounded or unbounded clique-width.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 199 شماره
صفحات -
تاریخ انتشار 2016